Methods |/ Adaptive metric methods / Newton method

Intuition

Newton’'s method to find the equation’ roots

Consider the function ¢(z) : R — R. Let there be equation ¢(z*) = 0. Consider a linear
approximation of the function ¢(z) near the solution (z* — = = Ax):

p(a) = gl + Az) ~ p(z) + ¢'(¢) Aa.
We get an approximate equation:
p(2) +¢'(®)Az = 0
()

We can assume that the solution to equation Az = — will be close to the optimal

¢'(z)

Azx* = xz* — x.

We get an iterative scheme:

This reasoning can be applied to the unconditional minimization task of the f(:c) function by
writing down the necessary extremum condition:

fi(z*) =0

https://fmin.xyz/
https://fmin.xyz/docs/methods/Methods/
https://fmin.xyz/docs/methods/adaptive_metrics/adaptive_metric/

Here p(z) = f'(z), ¢'(x) = f"(x). Thus, we get the Newton optimization method in its
classic form:

-1

T =z — [(z1)] [(@) (Newton)

With the only clarification that in the multidimensional case:

r € R", f'(z) = Vf(z) e R", f"(z) = V2f(z) € R™".

Second order Taylor approximation of the function

Let us now give us the function f(:v) and a certain point . Let us consider the square
approximation of this function near xy:

F(@) = f@) + {7 (0@ — o) + 5 (" (@)@ — 22), @ — o).

The idea of the method is to find the point z .1, that minimizes the function f(a:), i.e.

Vf(zp) = 0.

%)

f(x)

f(xk+1)

\ 4

X Xir1 Xgpo X

V(i) = f(zr) + (k) (@ps1 — z1) = 0
"(xr)(@pi1 — k) = —f'(zk)
"(@k) (@he1 — z) = — [(z1)] [(@k)
i =z — [f"(z2)] f (2h)-

-1

Let us immediately note the limitations related to the necessity of the Hessian’s non-

degeneracy (for the method to exist), as well as its positive definiteness (for the convergence
guarantee).

—f(x) r/
—quadratic approx.

4 -2 0 2 4

Quadratic approximation and Newton step (in green) for varying starting points (in red). Note
that when the starting point is far from the global minimizer (in 0), the Newton step totally
overshoots the global minimizer. Picture was taken from the post.

Convergence

https://francisbach.com/self-concordant-analysis-newton/

Let's try to get an estimate of how quickly the classical Newton method converges. We will try
to enter the necessary data and constants as needed in the conclusion (to illustrate the

methodology of obtaining such estimates).

por —2* = ap — [f"(@n)] " (@r) — 2t = ep— o — [()] (2) =

=ap—a” — [f(zi)] /01 F'(@* + 7(zg —) (g — 2)dr =

- (1 — [f"(@n)] /01 F(x* + (e, — :L‘*))dT) (zy — z%) =

= (@] (f”(wk) - /01 (2t + Ty — x*))d’r> (@) — a*) =
= [f"(zx)] (/01 (f" () = F"(2" + 7(x — w*))df)) (z — 2") =
= [f"(@)] Culer — ")

Used hereis: G = fol (f"(zr) — f"(z* + 7(xr — x*))dT). Let's try to estimate the size of
Gy:

<

|Gl = H/O (f"(zx) — f"(z* + 7(21, — 2*))dr)

1
< / | f" (k) — f'(z* + 7(zk — 2*))||dT < (Hessian’s Lipschitz continuity)
0

1 1
S/ Mka—m*—T(a:k—:c*)HdT:/ M|z — z*||(1 — 7)dr = %M,
0 0

where ri, = ||z — z*||.

So, we have:

The1 < H Lf" (z)] _1H : %M"’“k

Already smells like quadratic convergence. All that remains is to estimate the value of Hessian's
reverse.

Because of Hessian's Lipschitz continuity and symmetry:

So, (here we should already limit the necessity of being f”(a:k) > 0 for such estimations, i.e.
re < ﬁ)

- riM
TEHL= 50— M)

The convergence condition ;1 < 7 imposes additional conditionson 7y : 7 < 32—]\14

Thus, we have an important result: Newton's method for the function with Lipschitz positive
Hessian converges quadratically near (||zg — z*|| < +2;) to the solution.

Theorem

Let f(x) be a strongly convex twice continuously differentiated function at R”, for the second
derivative of which inequalities are executed: II,, < f"(z) < LI,. Then Newton's method
with a constant step locally converges to solving the problem with superlinear speed. If, in
addition, Hessian is Lipschitz continuous, then this method converges locally to z* at a
quadratic rate.

Summary

It's nice:

guadratic convergence near the solution *

. affinity invariance

the parameters have little effect on the convergence rate

It's not nice:

it is necessary to store the hessian on each iteration: O(n?) memory
it is necessary to solve linear systems: O(n3) operations
. the Hessian can be degenerate at x*

the hessian may not be positively determined — direction —(f”(x)) ™1 /() may not be a

descending direction

Possible directions

Newton’s damped method (adaptive stepsize)

Quasi-Newton methods (we don't calculate the Hessian, we build its estimate - BFGS)
Quadratic evaluation of the function by the first order oracle (superlinear convergence)
The combination of the Newton method and the gradient descent (interesting direction)

Higher order methods (most likely useless)

Materials

Going beyond least-squares — | : self-concordant analysis of Newton method
Going beyond least-squares — Il : Self-concordant analysis for logistic regression

Picture with gradient and Newton field was taken from this tweet by Keenan Crane.

" About global damped Newton convergence issue. Il

Code

https://francisbach.com/self-concordant-analysis-newton/
https://francisbach.com/self-concordant-analysis-for-logistic-regression/
https://twitter.com/keenanisalive/status/1421783338143129603
https://colab.research.google.com/drive/1-LmO57VfJ1-AYMopMPYbkFvKBF7YNhW2?usp=sharing
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Newton.ipynb

Methods |/ Adaptive metric methods /| Quasi Newton methods

Intuition

For the classic task of unconditional optimization f(x) — m]iRn the general scheme of iteration
TER™

method is written as:
Tri1 = Tp + QS

In the Newton method, the s, direction (Newton'’s direction) is set by the linear system solution
at each step:

sk =—ByVf(zk), Br=f., (zx)

i.e. at each iteration it is necessary to compensate hessian and gradient and resolve linear
system.

Note here that if we take a single matrix of B, = I,, as B}, at each step, we will exactly get the
gradient descent method.

The general scheme of quasi-Newton methods is based on the selection of the B}, matrix so
that it tends in some sense at k — oo to the true value of inverted Hessian in the local
optimum f;tl(w*) Let's consider several schemes using iterative updating of B}, matrix in the
following way:

Bji1 = By, + ABy,
Then if we use Taylor's approximation for the first order gradient, we get it:
Vi(xr) = Vi(@ri1) = foe(@ri)(@r — Tri)
Now let's formulate our method as:
Azj = By 1Ay, where Ay = Vf(zpy1) — VF(zp)
in case you set the task of finding an update A By:

AB Ay, = Az — BrAyy,

Broyden method

https://fmin.xyz/
https://fmin.xyz/docs/methods/Methods/
https://fmin.xyz/docs/methods/adaptive_metrics/adaptive_metric/

The simplest option is when the amendment A B}, has a rank equal to one. Then you can look
for an amendment in the form

ABy = urqrgq, -

where L is a scalar and gy, is a non-zero vector. Then mark the right side of the equation to
find ABjy, for Azy:

Azk = Aazk - BkAyk

We get it:
1egedy Ayr = Az,
T
(k- ax Ayr)ax = Az
. . . T -1

A possible solution is: q;, = Azy, pg = (qk Ayk) .
Then an iterative amendment to Hessian's evaluation at each iteration:

(A:Ek — BkAyk)(Aai‘k — BkAyk)T

ABp =
: (Azy, — BrAyr, Ayk)

Davidon-Fletcher—-Powell method
ABy, = p1Azy(Azy) " + poBrAyg(BrAyy)

AB _ (A:L'k)(Axk)T B (BkAyk)(BkAyk)T
"7 (Axy, Ay (BrAyy, Ayy)

Broyden-Fletcher—Goldfarb—Shanno method

a C
ABkz - QUQTa Q - [QDQQ]) q1,92 € Rn) U= (b)

C

Az)(Azx) " B A Bi.Ay.) "
ap,— BEB8)T BAWESW |
(Azy, Ay) (BrAyg, Ayy)

Code

ZC Open in Colab

Comparison of quasi Newton methods

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Quasi_Newton.ipynb
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb

