
Brief recap of matrix calculus

Useful definitions and notations
We will treat all vectors as column vectors by default.

Matrix and vector multiplication
Let  be , and  be , and let the product  be:

then  is a  matrix, with element  given by:

Let  be , and  be , then the typical element of the product:

is given by:

Finally, just to remind:

 (but if  and  are commuting matrices, which means that , 
)

Gradient
Let , then vector, which contains all first order partial derivatives:
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Hessian
Let , then matrix, containing all the second order partial derivatives:

But actually, Hessian could be a tensor in such a way:  is just 3d tensor, every
slice is just hessian of corresponding scalar function .

Jacobian
The extension of the gradient of multidimensional  :
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named gradient of . This vector indicates the direction of steepest ascent. Thus, vector 
 means the direction of the steepest descent of the function in the point. Moreover, the

gradient vector is always orthogonal to the contour line in the point.

General concept
The idea implies formulating a set of simple rules, which allows you to calculate derivatives just like
in a scalar case. It might be convenient to use the differential notation here.

Differentials
After obtaining the differential notation of  we can retrieve the gradient using following formula:

Then, if we have differential of the above form and we need to calculate the second derivative of the
matrix/vector function, we treat "old"  as the constant , then calculate 

Properties
Let  and  be the constant matrices, while  and  are the variables (or matrix functions).
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Good introduction
The Matrix Cookbook
MSU seminars (Rus.)
Online tool for analytic expression of a derivative.
Determinant derivative

Examples

Example 1

Find , if .

Example 2

Find , if .

∇f(x) f(x) =  x Ax +
2
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∇f(x), f (x)′′ f(x) = −e−x xT

https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
http://www.machinelearning.ru/wiki/images/a/ab/MOMO18_Seminar1.pdf
http://www.matrixcalculus.org/
https://charlesfrye.github.io/math/2019/01/25/frechet-determinant.html


Example 3
Find , if .

Example 4
Find , if 

∇f(X) f(X) = ⟨S,X⟩ − log detX

∇f(X) f(X) = ln⟨Ax,x⟩,A ∈ S  ++
n




