Brief recap of matrix calculus

Useful definitions and notations

We will treat all vectors as column vectors by default.

Matrix and vector multiplication
Let Abem X n,and B ben X p, and let the product AB be:
C =AB

then C'is a m X p matrix, with element (4, j) given by:

n
Cij = E i i
k=1

Let A be m X n,and x be n X 1, then the typical element of the product:
z = Ax

is given by:

n
zZi = E Qik Tk
k=1

Finally, just to remind:
«C=AB C'=B'AT
AB + BA

A _ = 1 gk
k=0

o eATB =+ e4eB (butif A and B are commuting matrices, which means that AB = BA,

eAtB — 4B

(z, Ay) = (A" z,y)

Gradient

Let f(x) : R™ — R, then vector, which contains all first order partial derivatives:
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Hessian

Let f(z) : R™ — R, then matrix, containing all the second order partial derivatives:
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But actually, Hessian could be a tensor in such a way: (f(x) : R™ — R™) is just 3d tensor, every
slice is just hessian of corresponding scalar function (H (fi(z)) , H (f2(x)), ..., H (fm(x))).

Jacobian

The extension of the gradient of multidimensional f(z) : R™ — R™:
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R R RMXxn $$\dfrac{\partial f}{\partial x_{ij}}$



named gradient of f(x). This vector indicates the direction of steepest ascent. Thus, vector
—V f(x) means the direction of the steepest descent of the function in the point. Moreover, the
gradient vector is always orthogonal to the contour line in the point.

General concept

The idea implies formulating a set of simple rules, which allows you to calculate derivatives just like
in a scalar case. It might be convenient to use the differential notation here.

Differentials
After obtaining the differential notation of d f we can retrieve the gradient using following formula:
df(z) = (Vf(z),dz)

Then, if we have differential of the above form and we need to calculate the second derivative of the
matrix/vector function, we treat "old" dz as the constant dx1, then calculate d(df)

d’f(x) = (V2 f(x)dz1,dzs) = (Hf(x)dz1, dzs)

Properties
Let A and B be the constant matrices, while X and Y are the variables (or matrix functions).

e dA=0
e d(aX) = a(dX)

(
c dX+Y)=dX +dY
e d(XT) = (dX)7
. d(XY) = (dX)Y + X(dY)
e d(X,Y) = (dX,Y)+ (X,dY)

. d E) _ pdX — (dp) X
¢ ¢’
e d(det X)=det X(X ',dX)
e d(tr X) = (I,dX)
+ df(g(@) = L - dg(a)
g
+ H=(J(VH)
e (X)) = X 1(dX)X !
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Examples

Example 1

1
Find V f(z), if f(x) = ixTA:E + bz +c.

Example 2

Find V£ (z), f"(z), if f(z) = —e ® °.


https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
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http://www.machinelearning.ru/wiki/images/a/ab/MOMO18_Seminar1.pdf
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Example 3

Find Vf(X),if f(X) = (S,X) — logdet X.

Example 4

Find Vf(X),if f(X) = In(Az,z),A € S"






